Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Adv Healthc Mater ; : e2303972, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692263

ABSTRACT

Heart valve disease poses a significant clinical challenge, especially in pediatric populations, due to the inability of existing valve replacements to grow or respond biologically to their microenvironment. Tissue-engineered heart valves (TEHVs) provide a solution by facilitating patient-specific models for self-repair and remodeling. In this study, a 3D-bioprinted TEHV is designed to emulate the trilayer leaflet structure of an aortic valve. A cell-laden hydrogel scaffold made from gelatin methacrylate and polyethylene glycol diacrylate (GelMA/PEGDA) incorporates valvular interstitial-like (VIC-like) cells, being reinforced with a layer of polycaprolactone (PCL). The composition of the hydrogel scaffold remains stable over 7 days, having increased mechanical strength compared to pure GelMA. The scaffold maintains VIC-like cell function and promotes extracellular matrix (ECM) protein expression up to 14 days under two dynamic culture conditions: shear stress and stretching; replicating heart valve behavior within a more physiological-like setting and suggesting remodeling potential via ECM synthesis. This TEHV offers a promising avenue for valve replacements, closely replicating the structural and functional attributes of a native aortic valve, leading to mechanical and biological integration through biomaterial-cellular interactions.

2.
Front Physiol ; 15: 1327794, 2024.
Article in English | MEDLINE | ID: mdl-38638277

ABSTRACT

Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.

3.
Sci Rep ; 14(1): 2243, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278855

ABSTRACT

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous potential for basic research and translational application. However, these cells structurally and functionally resemble fetal cardiomyocytes, which is a major limitation of these cells. Microgravity can significantly alter cell behavior and function. Here we investigated the effect of simulated microgravity on hiPSC-CM maturation. Following culture under simulated microgravity in a random positioning machine for 7 days, 3D hiPSC-CMs had increased mitochondrial content as detected by a mitochondrial protein and mitochondrial DNA to nuclear DNA ratio. The cells also had increased mitochondrial membrane potential. Consistently, simulated microgravity increased mitochondrial respiration in 3D hiPSC-CMs, as indicated by higher levels of maximal respiration and ATP content, suggesting improved metabolic maturation in simulated microgravity cultures compared with cultures under normal gravity. Cells from simulated microgravity cultures also had improved Ca2+ transient parameters, a functional characteristic of more mature cardiomyocytes. In addition, these cells had improved structural properties associated with more mature cardiomyocytes, including increased sarcomere length, z-disc length, nuclear diameter, and nuclear eccentricity. These findings indicate that microgravity enhances the maturation of hiPSC-CMs at the structural, metabolic, and functional levels.


Subject(s)
Induced Pluripotent Stem Cells , Weightlessness , Humans , Myocytes, Cardiac/metabolism , Cells, Cultured , Sarcomeres , Cell Differentiation
4.
Biomaterials ; 305: 122450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38169190

ABSTRACT

In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Atherosclerosis/drug therapy , Macrophages , Foam Cells , Monocytes , Gene Expression , Myocytes, Smooth Muscle
5.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195652

ABSTRACT

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Animals , Humans , Mice , Cell Nucleus , Disease Models, Animal , Early Detection of Cancer , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Collagen/metabolism
6.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38099436

ABSTRACT

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Plaque, Atherosclerotic , Male , Female , Humans , Mice , Animals , Plaque, Atherosclerotic/metabolism , Proprotein Convertase 9/metabolism , Endothelial Cells/metabolism , Hypercholesterolemia/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Membrane Proteins/metabolism
7.
ACS Chem Biol ; 18(11): 2349-2367, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37910400

ABSTRACT

Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.


Subject(s)
Nucleic Acids , Nucleic Acids/chemistry , Oligonucleotides/chemistry , DNA/metabolism , Lipids , Peptides
8.
Cell Rep ; 42(11): 113361, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910508

ABSTRACT

Vascular endothelial growth factor receptor-2 (VEGFR2) plays a key role in maintaining vascular endothelial homeostasis. Here, we show that blood flows determine activation and inactivation of VEGFR2 through selective cysteine modifications. VEGFR2 activation is regulated by reversible oxidation at Cys1206 residue. H2O2-mediated VEGFR2 oxidation is induced by oscillatory flow in vascular endothelial cells through the induction of NADPH oxidase-4 expression. In contrast, laminar flow induces the expression of endothelial nitric oxide synthase and results in the S-nitrosylation of VEGFR2 at Cys1206, which counteracts the oxidative inactivation. The shear stress model study reveals that disturbed blood flow operated by partial ligation in the carotid arteries induces endothelial damage and intimal hyperplasia in control mice but not in knock-in mice harboring the oxidation-resistant mutant (C1206S) of VEGFR2. Thus, our findings reveal that flow-dependent redox regulation of the VEGFR2 kinase is critical for the structural and functional integrity of the arterial endothelium.


Subject(s)
Endothelial Cells , Hydrogen Peroxide , Animals , Mice , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Front Cardiovasc Med ; 10: 1251141, 2023.
Article in English | MEDLINE | ID: mdl-37745110

ABSTRACT

Peripheral arterial disease (PAD) is an age-related medical condition affecting mostly muscular arteries of the limb. It is the 3rd leading cause of atherosclerotic morbidity. The mechanical environment of endothelial cells (ECs) in PAD is characterized by disturbed blood flow (d-flow) and stiff extracellular matrices. In PAD, the stiffness of arteries is due to decreased elastin function and increased collagen content. These flow and stiffness parameters are largely missing from current models of PAD. It has been previously proven that ECs exposed to d-flow or stiff substrates lead to proatherogenic pathways, but the effect of both, d-flow and stiffness, on EC phenotype has not been fully investigated. In this study, we sought to explore the effect of sex on proatherogenic pathways that could result from exposing endothelial cells to a d-flow and stiff environment. We utilized the scRNA-seq tool to analyze the gene expression of ECs exposed to the different mechanical conditions both in vitro and in vivo. We found that male ECs exposed to different mechanical stimuli presented higher expression of genes related to fibrosis and d-flow in vitro. We validated our findings in vivo by exposing murine carotid arteries to d-flow via partial carotid artery ligation. Since women have delayed onset of arterial stiffening and subsequent PAD, this work may provide a framework for some of the pathways in which biological sex interacts with sex-based differences in PAD.

10.
Atherosclerosis ; 379: 117189, 2023 08.
Article in English | MEDLINE | ID: mdl-37527611

ABSTRACT

BACKGROUND AND AIMS: Hyperlipidemia leads to the accumulation of oxidized low-density lipoprotein (oxLDL) within the vessel wall where it causes chronic inflammation in endothelial cells (ECs) and drives atherosclerotic lesions. Although focal adhesion kinase (FAK) is critical in proinflammatory NF-κB activation in ECs, it is unknown if hyperlipidemia alters FAK-mediated NF-κB activity in vivo to affect atherosclerosis progression. METHODS: We investigated changes in EC FAK and NF-κB activation using Apoe-/- mice fed a western diet (WD). Both pharmacological FAK inhibition and EC-specific FAK inhibited mouse models were utilized. FAK and NF-κB localization and activity were also analyzed in human atherosclerotic samples. RESULTS: ECs of hyperlipidemic mice clearly showed much higher levels of FAK activation in the cytoplasm, which was associated with increased NF-κB activation compared to normal diet (ND) group. On the contrary, FAK is mostly localized in the nucleus and inactive in ECs under healthy conditions with a low NF-κB activity. Both pharmacological and EC-specific genetic FAK inhibition in WD fed Apoe-/- mice exhibited a significant decrease in FAK activity and cytoplasmic localization, NF-κB activation, macrophage recruitment, and atherosclerotic lesions compared to the vehicle or FAK wild-type groups. Analyses of human atherosclerotic specimens revealed a positive correlation between increased active cytoplasmic FAK within ECs and NF-κB activation in the lesions. CONCLUSIONS: Hyperlipidemic conditions activate NF-κB pathway by increasing EC FAK activity and cytoplasmic localization in mice and human atherosclerotic samples. As FAK inhibition can efficiently reduce vascular inflammation and atherosclerotic lesions in mice by reversing EC FAK localization and NF-κB activation, these findings support a potential use for FAK inhibitors in treating atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipidemias , Animals , Humans , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Endothelial Cells/metabolism , Endothelium , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hyperlipidemias/complications , Inflammation/metabolism , NF-kappa B/metabolism
11.
Curr Issues Mol Biol ; 45(7): 5631-5644, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37504271

ABSTRACT

Atherosclerosis is driven by intimal arterial macrophages accumulating cholesterol. Atherosclerosis also predominantly occurs in areas consisting of proinflammatory arterial endothelial cells. At time of writing, there are no available clinical treatments that precisely remove excess cholesterol from lipid-laden intimal arterial macrophages. Delivery of anti-miR-33a-5p to macrophages has been shown to increase apoAI-mediated cholesterol efflux via ABCA1 upregulation but delivering transgenes to intimal arterial macrophages is challenging due to endothelial cell barrier integrity. In this study, we aimed to test whether lipoparticles targeting proinflammatory endothelial cells can participate in endothelial cell-derived exosome exploitation to facilitate exosome-mediated transgene delivery to macrophages. We constructed lipoparticles that precisely target the proinflammatory endothelium and contain a plasmid that expresses XMOTIF-tagged anti-miR-33a-5p (LP-pXMoAntimiR33a5p), as XMOTIF-tagged small RNA demonstrates the capacity to be selectively shuttled into exosomes. The cultured cells used in our study were immortalized mouse aortic endothelial cells (iMAECs) and RAW 264.7 macrophages. From our results, we observed a significant decrease in miR-33a-5p expression in macrophages treated with exosomes released basolaterally by LPS-challenged iMAECs incubated with LP-pXMoAntimiR33a5p when compared to control macrophages. This decrease in miR-33a-5p expression in the treated macrophages caused ABCA1 upregulation as determined by a significant increase in ABCA1 protein expression in the treated macrophages when compared to the macrophage control group. The increase in ABCA1 protein also simulated ABCA1-dependent cholesterol efflux in treated macrophages-as we observed a significant increase in apoAI-mediated cholesterol efflux-when compared to the control group of macrophages. Based on these findings, strategies that involve combining proinflammatory-targeting lipoparticles and exploitation of endothelial cell-derived exosomes appear to be promising approaches for delivering atheroprotective transgenes to lipid-laden arterial intimal macrophages.

12.
Diseases ; 11(3)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37489440

ABSTRACT

Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether inhibition of miR-33a-5p in pro-inflammatory EC is capable of increasing ABCA1-dependent cholesterol efflux. In our study, we initially transfected LPS-challenged, immortalized mouse aortic EC (iMAEC) with either pAntimiR33a5p plasmid DNA or the control plasmid, pScr. We detected significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in iMAEC transfected with pAntimiR33a5p when compared to iMAEC transfected with pScr. We subsequently used polymersomes targeting inflamed endothelium to deliver either pAntimiR33a5p or pScr to cultured iMAEC and showed that the polymersomes were selective in targeting pro-inflammatory iMAEC. Moreover, when we exposed LPS-challenged iMAEC to these polymersomes, we observed a significant decrease in miR-33a-5p expression in iMAEC incubated with polymersomes containing pAntimR33a5p versus control iMAEC. We also detected non-significant increases in both ABCA1 protein and apoAI-mediated cholesterol in iMAEC exposed to polymersomes containing pAntimR33a5p when compared to control iMAEC. Based on our results, inhibiting miR-33a-5p in pro-inflammatory EC exhibits atheroprotective effects, and so precisely delivering anti-miR-33a-5p to these cells is a promising anti-atherogenic strategy.

13.
Nutrients ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37432321

ABSTRACT

Cardiovascular disease is the leading cause of death in chronic kidney disease (CKD). Arginine, the endogenous precursor for nitric oxide synthesis, is produced in the kidneys. Arginine bioavailability contributes to endothelial and myocardial dysfunction in CKD. Plasma from 129X1/SvJ mice with and without CKD (5/6th nephrectomy), and banked plasma from children with and without CKD were analyzed for amino acids involved in arginine metabolism, ADMA, and arginase activity. Echocardiographic measures of myocardial function were compared with plasma analytes. In a separate experiment, a non-specific arginase inhibitor was administered to mice with and without CKD. Plasma citrulline and glutamine concentrations correlated with multiple measures of myocardial dysfunction. Plasma arginase activity was significantly increased in CKD mice at 16 weeks vs. 8 weeks (p = 0.002) and ventricular strain improved after arginase inhibition in mice with CKD (p = 0.03). In children on dialysis, arginase activity was significantly increased vs. healthy controls (p = 0.04). Increasing ADMA correlated with increasing RWT in children with CKD (r = 0.54; p = 0.003). In a mouse model, and children, with CKD, arginine dysregulation correlates with myocardial dysfunction.


Subject(s)
Arginine , Renal Insufficiency, Chronic , Animals , Mice , Arginase , Renal Dialysis , Disease Models, Animal , Citrulline
14.
Bioeng Transl Med ; 8(4): e10529, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476064

ABSTRACT

The direct preventative detection of flow-induced atherosclerosis remains a significant challenge, impeding the development of early treatments and prevention measures. This study proposes a method for diagnosing atherosclerosis in the carotid artery using nanometer biomarker measurements through surface-enhanced Raman spectroscopy (SERS) from single-drop blood samples. Atherosclerotic acceleration is induced in apolipoprotein E knockout mice which underwent a partial carotid ligation and were fed a high-fat diet to rapidly induce disturbed flow-induced atherosclerosis in the left common carotid artery while using the unligated, contralateral right carotid artery as control. The progressive atherosclerosis development of the left carotid artery was verified by micro-magnetic resonance imaging (micro-MRI) and histology in comparison to the right carotid artery. Single-drop blood samples are deposited on chips of gold-coated ZnO nanorods grown on silicon wafers that filter the nanometer markers and provide strong SERS signals. A diagnostic classifier was established based on principal component analysis (PCA), which separates the resultant spectra into the atherosclerotic and control groups. Scoring based on the principal components enabled the classification of samples into control, mild, and severe atherosclerotic disease. The PCA-based analysis was validated against an independent test sample and compared against the PCA-PLS-DA machine learning algorithm which is known for applicability to Raman diagnosis. The accuracy of the PCA modification-based diagnostic criteria was 94.5%, and that of the machine learning algorithm 97.5%. Using a mouse model, this study demonstrates that diagnosing and classifying the severity of atherosclerosis is possible using a single blood drop, SERS technology, and machine learning algorithm, indicating the detectability of biomarkers and vascular factors in the blood which correlate with the early stages of atherosclerosis development.

15.
Cardiovasc Res ; 119(9): 1811-1824, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37279540

ABSTRACT

AIMS: Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS: By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate ß2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with ß2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS: Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-ß2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.


Subject(s)
Atherosclerosis , CD18 Antigens , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/genetics , Atherosclerosis/metabolism , CD18 Antigens/metabolism , Chemokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Knockout, ApoE , Monocytes/metabolism , Plaque, Atherosclerotic/metabolism
16.
Nat Rev Cardiol ; 20(11): 738-753, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37225873

ABSTRACT

Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.

17.
Sci Rep ; 13(1): 2404, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765143

ABSTRACT

Endothelial dysfunction and inflammatory immune response trigger dedifferentiation of vascular smooth muscle cells (SMCs) from contractile to synthetic phenotype and initiate arterial occlusion. However, the complex vascular remodeling process playing roles in arterial occlusion initiation is largely unknown. We performed bulk sequencing of small and messenger RNAs in a rodent arterial injury model. Bioinformatic data analyses reveal that six miRNAs are overexpressed in injured rat carotids as well as synthetic-type human vascular SMCs. In vitro cell-based assays show that four miRNAs (miR-130b-5p, miR-132-3p, miR-370-3p, and miR-410-3p) distinctly regulate the proliferation of and monocyte adhesion to the vascular SMCs. Individual inhibition of the four selected miRNAs strongly prevents the neointimal hyperplasia in the injured rat carotid arteries. Mechanistically, miR-132-3p and miR-370-3p direct the cell cycle progression, triggering SMC proliferation. Gene ontology analysis of mRNA sequencing data consistently reveal that the miRNA targets include gene clusters that direct proliferation, differentiation, and inflammation. Notably, bone morphogenic protein (BMP)-7 is a prominent target gene of miR-370-3p, and it regulates vascular SMC proliferation in cellular and animal models. Overall, this study first reports that the miR-370-3p/BMP-7 axis determines the vascular SMC phenotype in both rodent and human systems.


Subject(s)
MicroRNAs , Muscle, Smooth, Vascular , Animals , Humans , Rats , Bone Morphogenetic Protein 7/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype
18.
Cell Commun Signal ; 21(1): 14, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670446

ABSTRACT

BACKGROUND: Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS: Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS: Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION: Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Male , Female , Humans , Mice , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Culture Media, Conditioned , Calcinosis/metabolism , Calcinosis/pathology , Cells, Cultured
19.
Front Cardiovasc Med ; 9: 1002067, 2022.
Article in English | MEDLINE | ID: mdl-36419483

ABSTRACT

HIF1A is significantly upregulated in calcified human aortic valves (AVs). Furthermore, HIF1A inhibitor PX-478 was shown to inhibit AV calcification under static and disturbed flow conditions. Since elevated stretch is one of the major mechanical stimuli for AV calcification, we investigated the effect of PX-478 on AV calcification and collagen turnover under a pathophysiological cyclic stretch (15%) condition. Porcine aortic valve (PAV) leaflets were cyclically (1 Hz) stretched at 15% for 24 days in osteogenic medium with or without PX-478. In addition, PAV leaflets were cyclically stretched at a physiological (10%) and 15% for 3 days in regular medium to assess its effect of on HIF1A mRNA expression. It was found that 100 µM (high concentration) PX-478 could significantly inhibit PAV calcification under 15% stretch, whereas 50 µM (moderate concentration) PX-478 showed a modest inhibitory effect on PAV calcification. Nonetheless, 50 µM PX-478 significantly reduced PAV collagen turnover under 15% stretch. Surprisingly, it was observed that cyclic stretch (15% vs. 10%) did not have any significant effect on HIF1A mRNA expression in PAV leaflets. These results suggest that HIF1A inhibitor PX-478 may impart its anti-calcific and anti-matrix remodeling effect in a stretch-independent manner.

20.
Front Cardiovasc Med ; 9: 979745, 2022.
Article in English | MEDLINE | ID: mdl-36247423

ABSTRACT

Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPß, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...